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Abstract—In this paper. an analysis is made to study the stability of a cylindrical shell of finite length, placed hori-
zontally and simply supported at both ends. The load on the shell is a simulation of its weight. The partial
differential equations governing the stability of the shell contain variable coefficients x and ¢. The solution to the
differential equations is assumed in the form of a double Fourier series. The coefficient determinant of a set of
infinitely many algebraic equations is of infinite order and the convergence of such determinant is proved for the
case of doubly symmetrical buckling modes. Numerical results obtained with the use of a digital computer
are presented to verify the convergence of the determinant and also to show the non-dimensional critical load.

INTRODUCTION

A BARREL-VAULT roof is a cylindrical shell with horizontal generators, carrying essentially
its own weight. For several decades such structures have been built, but the problem of their
elastic stability has defied solution. The present paper represents an effort in this direction.
It deals with a complete circular cylinder, supported at its ends and loaded by its weight.
To keep the complexity of the work within bounds while still getting at the essence of the
problem, the actual load, uniform in the direction of the generators, has been replaced by
the first term of its Fourier expansion. Beyond this simplification, the theory presented
here is exact in the sense of linear stability theory.

DIFFERENTIAL EQUATIONS OF STABILITY

Before we derive the differential equations, let us introduce first the following definitions
and considerations. The loads applied to the shell before buckling are called the basic loads,
and the corresponding stress resultants and associated deformation are called the basic
stress resultants and the basic deformation, respectively. A subscript I is used for the basic
stress resultants to distinguish them from the additional forces appearing when the shell
buckles. The basic deformation is considered to be small and is eliminated from our con-
sideration by tracing the coordinate lines on the cylinder after this deformation has taken
place. The displacements «, v, w are used to describe the additional deformation due to
buckling.
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The additional stress resultants due to buckling are denoted by N,,N,,...M,, Q,.
The normal and shearing forces are additional to the basic forces of the same kind. There-
fore the total forces are

Ny, = Ngy+N,, N,.=N,4+N,,
N,y = N,y+ N4, N4y = Ngur+ Ny,

The stress resultants of a shell element in the buckled state are shown in Fig. 2. The
introduction of the reference vectors (1+¢,) or (1+¢,) has been .discussed by Fliigge
[1, p. 414]. They stem from the consideration of the law of conservation of energy in closed
cycles of loading and unloading.

We shall now proceed to find the differential equations of stability. We assume a load
p cos(nx/l) per unit of area, directed vertically downward. This is the first harmonic of an
actual gravity load of intensity pn/4. This substitution has been chosen to limit the com-
plexity of the mathematics to what appears to be most important for the result. With the
boundary conditions that N ; = 0 at x = +1[/2, we obtain the following basic stress

resultants:
N4 = — pa cos(nx/l) cos ¢,

N, 1 = — (2pl/m)sin(nx/]) sin ¢,
N, = —(2p/a)(i/n)? cos(nx/l) cos ¢.

. w2 (2 |

(a)

FiG. 1. Sign conventions for coordinates, displacements and stresses of a cylinder. (a) Coordinates and displace-
ments. (b) Stresses.
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X dx .|

X

3 Z Ry 1+egladp+ ...

A (1+e,)add
-—— -

Rfi+e,)odd+....

\K‘ﬁ¢,(l+e:}dx+ cees

Mgl1+egddxt ...
(b).
F1G. 2. Stress resultants of a shell element in the buckled state.
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The six equations of equilibrium of a shell element as shown in Figs. 2(a) and (b) can
now be obtained. The derivatives with respect to the dimensionless coordinates x/a and ¢
are indicated by primes and dots respectively, i.e. a[d( )/ox] = ( ) and &( )/0¢ = ( ). All
the quadratic disturbance quantities such as Ni¢, and N, are neglected. Also, the cosine
of a small angle is approximated by unity. The six equations are

1\? . . .
N.+Ny—p cosﬂcoscp 2{—~] u"+u" +ﬁz-smf§sm¢u"+cos Esmq':ou' =0,
I na na l !

. , X . .

N4+ N y—Qs—p cosTcos¢ v +2 po v +w

E;E sin (20" +w)+cos ? sin (v’ +w)} =0,
-y nx 1\? . o

Qs+ Q +Ny+p cosTcosdz 2 . WAW -2 —w

I .
+2—sin
na

I . . . R
+ 2; sin -7-?- sin ¢(2w" —v')+ 2 cos _n}_x sin ¢pw' —v)

+2’—sinEcos ¢ w’} =0,
na l
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My+M,,—aQ, = 0, (1a—f)
M +My.—aQ, =0,
aN,,—aNz+M,, = 0.

By eliminating @, and Q, by means of equations (1d), (1¢) and introducing the elastic
law obtained by Fliigge (see [1], p. 214) into the remaining equilibrium equations, we
obtain the following three coupled linear homogeneous partial differential equations for
u,vand w:

- 1
”+%u +—;—v +w' +k[—(u +w")—w’ :|

4 A A
—q[cos)i—cos ¢(———u"+u )+Isin?xsin¢u"+cos—afsin¢u'] = (,

1+v . . 1=y, 3 —v
Tu +v +TU +w +k[§(1 " 2 w'’ ]

2. A
_q[COS—COS ¢( U "4+ w ) +Isin7xsin ¢(2U’.+W,)

+cos % sin ¢ +w)] =0, (2a—)

-V 1oe " 3_V " e Tpon voes .
vl +v +w+k Tu —u ——2—v +wW"” 2w W 2W W

+q|:cos'1 cos¢(—w”+w -2 —w )

zsin i—xcos ow :I = (.
A a

2
+I sin%aisin 2w —1)+2 cos%sin o(w —v)+

The dimensionless parameters in these equations are

and the quantities D = Et/(1 —v?) and K = Et3/12(1 —v?) are, respectively, the extensional
and flexural rigidities of the shell.
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SOLUTION OF THE DIFFERENTIAL EQUATIONS

The assumed solution which will represent the doubly symmetric buckling mode, can
be written in the following infinite series:

@ nix
u= Z Z Apa CO8 mep sin —=,
m=0,1,2,... a=1,3,5,.
il el ) nix
v= 3 Y. B,,sinm¢cos—, 3)
m=1,2,..n=1,3,5,... a

w= Y Y Cp.cosmécos Z‘—iﬁ.

m=0,1,2,...n=1,3,5,...

Because of the restriction of n to odd values, the solution (3) satisfies the usuval (and
useful) boundary conditions
v=w=0, N, =M_=0
at both ends of the cylinder.

When the solution (3) is introduced into the differential equations (2a—), there appear
products of two trigonometric functions of the same coordinate. Well known identities like

o (n+ l)ﬁ.x]
a

cos(nix/a) cos(Ax/a) = %I:coS (n— al)).x

may be applied, but these lead to the appearance of even values of n, which are undesirable.
They can be avoided by expanding each sine or cosine of such an argument into a series of
sines or cosines of (n+ w)Ax/a with odd n and odd (n+ w). After this has been done, the right-
hand side of each equation is a double Fourier series, using all integers m and all odd integers
n. To make these series vanish identically the following equations must hold :

Amna:ull,mn + Bmua:li,mn + Cmna:l:,mn

q
+2_ Z [Am—l,n+mal:}|,m— l,n+m+Am+ l,n+ma:l:|,m+1,n+m] = 09
M =012,

Anwazull.mn + anamn,mu + Cmnamn,mn

q
+£ Z [Bm—l,n+wa3|ﬁ,m— 1,n+m+Bm+l,n+ma3uz;,m+l,n+m
0=0,12,.

23 23 —
+Con— 1.0+ 0%mmm—10+0 T Cum+ 1,0+ 0%mnm+ 1n+al =0,

Amlaﬂsl:,"lll + anamn,mn + lelaﬂlll mn

q
+§- Z [Bm- 1,n+wa3|i,m— l,n+m+Bm+ 1.u+ma:i,m+ In+ow
T =012,

33 33 —
+ Cm— l.n+mamn.m— 1,n+w+ Cm+ l,n+mamn,m+ 1,n+w] = 0:

m=0,1,2,...,n=13,5,.... (4a—)
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The first superscript of the coefficients in the above equations denotes the order of the
equation in the triplet. In the second superscript, the numbers 1, 2, 3 distinguish coefficients
of A, B, C, respectively. The first two subscripts denote the particular indices m and n given
to the triplet and the last two subscripts agree with the subscripts of the unknown quantity
A, B, or C. These coeficients are expressed as follows:

all = (nd)? +1—g—”(1 +k)m?,

1
Gy = Ok = 2 Anm)

s = B = )+ 4] 02~

m?+ 1—5—”{1 +3k)(nA)?,

o = i = | 1450 |

a3l = L+k[(nA)*+2niy’m? + m* —2m? + 1],

Gonn

and forn+ow = 1:

s [_ sin(22—_n')1(1t/2)+ sin(2 2-&-:')1(7t/2): D S 1]
Lk i1t = [— Sin(zz_ _",)1(”/ 2, Sin(z; - ,)1("/ 2): [2+(m-+ 1)+ 5(m-+ 1)],
o :sin(22———n')'(n/2)+sin(2 2—{-:’)1(1t/2): D 1 S )]
02,0, = — ism(zz— _":,("/ 2, Si“(z;'fl(“/ 2): [24(m+1)2+5m+1)],
o Tsin(22—_n’)1(1r/2)+sin(22++n')l(n/2): s

o :sin(22—-—n;(n/2)+sin(2 2-l-+n')'(1c/2): .

o l:sin(22—_nr)‘(n/2)+ sin(2 ;:')l(n/z)] 6—3m),

2 l:sin(22—-:1')1(n/2)+sin(2 2—{-:’),(7t/2)] 652m),

o [sin(22——n')'(n/2)+sin(2 2++n’)1(7t/2):|[_ o 1+ S ) 11,

oftann = =[P R

2
Tn rin ][(m+1) +6(m+1)+1],
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and for n+w # 1, with

_ sin(@—1)(/2) _sinQn+w—1)(z/2)

Hl ’ H2

w—1 2n+w—1 ’
. _s@+D@2) o _ sin@ntot1)m2),
3= o+l 4= 2n+w+1

ALt o 1mte = (—Hy+ H)[2n+ ) +(m—1)* — (m—1)+4(n+ w)(m—1)]
+(—Hy+ H)2(n+ ) +(m—1)> —(m—1)—4n+ w)(m—1)],
alt i imie = (—Hy+ H)2(n+ 0+ (m+1)2 + (m+ 1)—4n+ w)(m+1)]
+(—H; + H)2(n+ w)? + (m+1)2 + (m+ 1)+ 4(n+ w)(m+ 1)},
Gpam—1ato = —(Hy+Hy)2n+w)* +(m—1)*—(m—1)+4(n+w)m—1)]
—(H;3+ H)2(n+ w)* +(m—1)>— (m—1)— 4n+ w)(m—1)],
a2 i into = —(Hy+ H)2n+ @)+ (m+1)2 + (m+ 1) — Hn+ w)(m+1)]
—(H;+ H)2(n+ 0)* +(m+ 1) + (m+ 1)+ 4(n+ 0)(m+ 1)),
Gpmm=1mt0 = —(Hy+ Hp)[2n+ ) +(m—2)]—(H3 + Hy)[ — 2(n+ w)+(m—2)],
Gam+ 1a+o = —(Hy+ H)[—2n+ 0)+(m+2)]— (H; + Hy)[2n+ w)+ (m+2)],
a3 imro = Hi+H)[—2(n+w)—2(m— 1)+ 2]+(H; + H)[2(n+ w)— 2(m—1)+2],
a3 i inte = (Hy+H)2(n+ 0)—2(m+1)=2]+(H; + H)[ - 2(n+ w)— 2Am+ 1)-2],
A - 1mte = (Hy+H)[—2(n+w)? ~(m—1)2—1—4(n+w)(m—1)—2(n+w)+2(m—1)]
+(Hy+ H)[—2(n+w)*—(m—1)>—1+4(n+o)(m— 1)+ 2n+ w)—2(m—1)],
a3 s tmto = (Hi+H)[ =2+ 0)? —(m+172 — 1+4(n+ 0)(m+1) —2n+ w)—2(m+1)]
+(Hy+H)-2n+w)>—(m+1)>—1—4(n+w)(m+1)

+2(n+w)—2(m+1)).

CONVERGENCE PROOF FOR THE COEFFICIENT DETERMINANT

Equations (4a—) represent a set of infinitely many homogeneous equations in the
infinitely many unknowns A4,,,, B,,, and C,,. A finite system of homogeneous equations
has a nontrivial solution if and only if its coefficient determinant vanishes. The same can
be true for infinite systems if the determinant of infinite order is meaningful, i.e. if there
exists a convergent process defining the value of the determinant. The convergence of the
coefficient determinant of equations (4da—) is proved for the reduced system which is
obtained by eliminating all unknowns 4,, and B,, from equations (4a—c). During the
process of elimination, terms with a factor ¢g* are neglected as being small of higher order.
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The final equation for the unknown C is as follows:

a2t g2 g2 .C,,,,,+%[(a3‘a”—a“a32)m,,M

+(a21032_alzaﬂl)mmnN_*_(alla22~alla2l)me} = 0. (5)

In equation (5), the subscripts at the end of a parenthesis or determinant apply to all
quantities inside and the terms M, N and Q stand for the following expressions :

" al3a?t —gt1g?3
M= z Cm—l,n+mamn.m—-1,n+m A
@ m-in+tom-into
al3ag?l—gt1g?3
A

22
+Cm+l,n+mamn,m+1,n+m )
m+intom+inte

23 23
+ Cm-— I,n+mams,m— l,n+o:+ Cm+ l,u+mamu.m+ 1,n+m:]’

" al2q?3 _ g*3g22
N = Z Cm— 10+ oBmnm— 1 a+o A
LY m—-1a+om=-1into

i1
+ Cm+ 1,u+o>amn,m+ 1Lntew

at?q?3
A

— axsazz)

3
m+intomt 1,s+w:]

A

- a2 al3a21_alla23
+Cm+ itante anm,m+ 1,a+m+amn,m+l,n+m A ’
m+intam+inte

where
al 1 a12

" 1 al?a?! —gl1g??
Q = Z Cm*l,n+w amn,m-l,n+(o+amn,m—l,n+m
(2] m-1i,nt+om-1lnte

= gl1g22 — g1242!,

With the substitution of M, N and @ in equation (5) this equation assumes the following
form:

all a12 al3

Cpp |a® a?? o +zi’1;2[...c,,,,,,,,,,,m+...c,,,_,,,,+a,]=o‘ ©)

[
aSl a32 a33

The coefficients of Cp 41 4+ 30d Cp,— 1 4+, Which have been indicated by a row of
dots, are complicated expressions depending on m, n and w.
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Our objective here is to find a way to write down equation (6) for all values of m and n
such that the determinant of the coefficients may be written as

1+byy b, by
byy 1+by, b,s
Det = b31 b32 1+b33 P (7)

A sufficient condition for the convergence of the above infinite determinant is to have
Z, ;b absolutely convergent [2, pp. 42-43].

In the convergence proof, we are interested mainly in the order of magnitude of the
coeflicients when we let both m and n go to infinity. Therefore, we shall only concern our-
selves with the governing terms, i.e. those which are of the highest degree in m and n. For this
reason, we rewrite equation (6) with the coefficients of the unknowns expressed only in
their order of magnitude. They are as follows:

[(m?+n®)* +(m?* + n?)® + (m* + n®?]C,,,

n+ow)
[(n+w)*+(m+1)%]

+2%{...n(m2+n2)z[(n+w)2+(mil)2...]

Cmi 1atew:-* .} = O.

®)

In obtaining this equation, we have neglected terms with q. k as being small. We have
also neglected terms such as km* when compared with m2. This can be done for the following
reason. In practical problems, the geometrical parameter & is a very small quantity. Thus
in order to have km* comparable to m?, the index m has to be very large such that the wave-
length in the circumferential direction is only a small multiple of the shell thickness. When
this happens, the linear theory of the thin shell is no longer valid. Furthermore, to produce
such small waves requires a high t/a ratio and a very short span. The corresponding
critical load in this case will be so large that it will never occur in the real application.
Therefore, within our present theory and also considering the practicality, such simplifi-
cation is entirely justified.

The + sign inside the bracket of equation (8) corresponds to the + sign appearing in
the subscript of C. The coefficient of C,,, is an eighth-degree polynomial in both m and n.
The expression of (m? + n)* inside the coefficient bracket can be written as:

4
(m*n® + 2m*n* + n%) (m—2+ 2m? + nz) .
n
Now, if we divide the entire equation (8) by

4
(m*n?+2m?n* 4+ n®) and use (%+ 2m?+ n’) Con = Cpp
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as a new unknown, we arrive at the following equation:

(m2+n?2+(m2+nt)?]

q n(m?*+n?)
T (m*n?+2m?n* 4 n®)

(n+o)(n+oP+mE12+.. ]
(m+1)*
(n+w)?

XY
@ I:(n+ w)*+

C:nil,n+w+"'} = 0. ®

+2(m+ 1)’][(n+w)’+(mi1)2]

For every admissible pair m, n [see equations (4)], we can write an equation of this sort.
In every equation there are infinitely many terms due to the summation over . When
writing these equations, we must choose a certain order in which they shall be listed. The
order to be employed here is shown in Fig. 3. The double lines indicate the diagonal co-
efficients which are the coefficients of C,,, in equation (8) or those of C,,, in equation (9). The
single lines indicate the other non-vanishing coefficients as the result of the summation
over w.

We can now compare Fig. 3 with the determinant (7). The only difference between the
two is that the elements in (7) are specified by only two indices, i and j, say, while in Fig. 3
they are specified by m, n in the column and n+ @, m+ 1 in the row. Nevertheless, the speci-
fication of an absolutely convergent summation of all the coefficients, individually squared,
is still the condition for the convergence of the infinite determinant of Fig. 3 regardless how
its elements are generated. Therefore, all we have to show is that the sum of the squares of
the diagonal terms in Fig. 3—not including the numeral 1 which appears in equation (9)}—
and of the squares of the off diagonal terms is absolutely convergent.

Consider first all the terms which are off the diagonal, i.e. all the terms containing the
load parameter ¢g. From equation (9), we obtain the following sum of the squares of the
coeflicients after some factorization in the numerator and in the denominator:

1+2n2+n4 1+2n+n2
1 m* m* o ?
XX 73"
n mhrm 2”4 n8 n“ m‘ mznz

L+ +—+... 1+ —+—+—+...].
m* m8 ot ot ot

The dots in the denominator indicate some complicated expressions of m and n whose
degrees are lower than that of the terms shown, all divided by w to a certain power. There-
fore, they are of no significance.

If we now let w, m, n go to infinity in this order, the summation converges as

1
3

1
n? w

n

a8

=
L=

m

s M8

for large m, n and w.
Next we shall consider all the terms which are on the diagonal. They are of the type
[(m? + n?)? + (m? + n?)?)/(m* + n®*}* which, for m, n —» oo, is of the order 1/(m?+ n?). When
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Fi1G. 3. Coefficient of C,,.

we sum the square of it over m and n, we obtain the expression of

Z Z(m +n2)2

This series is term by term less than the series

;g’m‘+n

which is found [3, pp. 22-23] to be equal to

1
Z Z (mz)2 +(n?)? Z [2—::—2 coth nn? —W] ,

and this converges like X,1/n2. Therefore our series X, X,, 1/(m?+n?)* is convergent by
comparison.

The convergence of the infinite-order coefficient determinant is now proved. The
success of this process relies on the thorough study of all the parameters contained in the
coefficients, the proper grouping and factorization of all the indices involved, and the
proper arrangement of all the summations so that the dependence of one index upon another
is not destroyed.

NUMERICAL RESULTS

Since we have proved the convergence of the infinite determinant, we can now take out
a finite segment for the approximate numerical evaluation of the critical load q. The
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equations (4a—c) will be used directly. The matrix is shown schematically in Fig. 4. The
double lines indicate the coefficients of 4,,,, B,,, and C,,,, which do not contain the load
term g. The single lines indicate the coefficients which contain the load term q. Let us denote
by M the matrix shown in Fig. 4. It is clear that this matrix can be decomposed into two
matrices A and B as shown in the following:

o .
. O
B8

If x is a column vector representing all the unknowns A4,,,, B,,, and C,,, shown in Fig. 4,
we can write equations (4a—c) in the following matrix form:

With division by ¢ and premultiplication by A~ !, equation (10) takes the form

where

Unknown
m n Eq No

A0\BoiCo1 A1) 81 Gy A2 82 C21 A B3Caie o 0 o s

(A+¢gB)x = 0.

(C—QDx = 0.

C=A"'B,

and

o A03B3C03 A3 B3 Cis Ap3BasCos As3B3sCs

o |

a
14
¢

OeQ SO0 NOQ

HNOQ Nl S

Fic. 4.

(10)

(11)
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Because we have chosen a particular way to arrange the unknowns as shown in Fig. 3,
the matrix C is neither symmetric nor positive definite. The eigenvalues €, therefore, will
not all be real and positive. For the physical problem one is interested only in the highest,
real, negative ) which corresponds to the lowest, real and positive q.

The numerical work done consisted of two parts. The first part was to verify the con-
vergence of the eigenvalue numerically for one set of parameters. The second part was to
obtain a set of approximate eigenvalues for varying parameters of the shell. To check upon
the convergence, the following values of the shell parameters were chosen:

t/a = 0-01, A=nma/l =025 and v=025

A computer program was written for finding all the eigenvalues. The calculations were
made on the Burroughs 5500 electronic digital computer of Stanford University. The highest
negative s from determinants of different sizes are tabulated in Tables 1 and 2. Table 1
shows the results for a fixed choice of values m (referring to the waves in circumferential
direction) and with an increasing number of n values. The tendency to converge rapidly
for an increasing number of n’s can be seen from the ratio of the successive ’s shown in the
last column. Table 2 shows the results for a fixed choice of n’s with an increasing number of
m’s. The convergence is also quite good in this case. The results of Tables 1 and 2 have been
plotted in Fig. 5. The dominating components of the buckling mode for the shell at hand
are seen to be n = 3 and m = 3, 4, 5, 6 as one might expect for a very long shell.

The set of curves plotted in Fig. 6 has been obtained for a fixed choice n = 3, 5, 7 and
m = 3,4,5,6. The eigenvalue will become less accurate as the parameter A increases.
Accurate result for large A can be obtained if a larger computer is available for handling
a determinant of high order.

TABLE 1. VARIATION OF HIGHEST EIGENVALUE WITH NUMBER OF
LONGITUDINAL WAVES

A=025m=3,4,5

i n Q, Ratio Q. ,/Q;
1 1 1714

2 1,3 —4.8804 x 10° f&%’“

3 13,5 —5.1824165 x 10° Lo

4 1.3,5,7 —5.26475x 10° hroyh

5 13,579 —5.28923 x 10°

TABLE 2. VARIATION OF HIGHEST FEIGENVALUE WITH NUMBER OF
CIRCUMFERENTIAL WAVES

2=025n=13

i m Q Ratio £, /1Y,
1 3,45 ~48804 x 10°

2 3456 ~514996x10° | oo

3 2345678  —516646x10°
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CONCLUDING REMARKS

The above theoretical investigation of the elastic stability of a cylinder carrying a
gravity load is based on the linear theory. Although it is known that the critical load from
the linear theory is usually higher than those obtained from the experiments due to many
other factors, nevertheless it can still serve as an upper bound. The stability of the cylindrical

53— e ———
~5-29
34,5
52} m32,3,8,5.6,7.8 e
g 3
X t/a =00l
o St 22025
! v 025
sol ©=1075/12
4.9}
.8 ! i ]
n=l a3 n=,35 n=1,3,57 n+4,3,5,7,9
Wave no
FiG. 5.
50
» 40—
=
Lo
e
30
20
1o * ! L
020 025 030 035
A
Fi1G. 6.

segments widely used as shell roofs is still an unsolved problem. The difficulty is mainly due
to the complicated prebuckling stresses caused by the edge disturbances. The results of
this work may serve as an estimate of the stability of such a shell.
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AGcrpaxT—B paboTe paeTcd aHaNM3 IS MCCIEAOBaHMA YCTOMMHMBOCTH LMIHHAPHYECKOH o6onouku
KOHEYHOH [UIMHBI, PAcIOJIORKEHHOX TOPH30OHTAJNIBHO H cBOOOAHO omeproi Ha AByXx kpasx. Harpysxoit
060n0uky ABIAETCA HMHTALMA ¢e Beca, YacTHhe MubdepeHLManbHbIE YPABHEHAR, KACAIOIIMECA YCTOMUM-
BOCTH 000JI04YKH, 3aKIIOYAIOT NIEpEMEHHBIE KO3 OHLHEHTHI X H ¢. Peluenne nuddepeHumanbHBX ypaBHEHHH
npuMensieTcs B dopMme OBOMHEIX pAnOB dypbe. JeTepMMHAHT KOMPPHLMEHTOB CHCTEMEI GECKOHCYHO
MHOrHX anmeOpanyeckux ypaBHenit sBisercs OeckomeyHbiM. JIOKa3BIBAETCA CXOANMOCTE MAaKolo
[IeTepMHHAHTAa IS CIyyasi ABOHHBIX CHMMETPHYECKHX GOpM BhIMy4nBanus. [laeTcsa YMCIICHHbIC pe3ybTaThl,
nonydyeHHsie ¢ moMoukio LIBM, 4T06b mpoBEepUTh CXOOHMOCTH ACTCPMHMHAHTA, a TaKkKe UIA TOTO,
4T00BI yKa3aTh 6€3pa3sMepHYIO KPHTHYECKYIO HArpy3Ky.



